DrugScoreRNAKnowledge-Based Scoring Function To Predict RNA-Ligand Interactions
نویسندگان
چکیده
There is growing interest in RNA as a drug target due to its widespread involvement in biological processes. To exploit the power of structure-based drug-design approaches, novel scoring and docking tools need to be developed that can efficiently and reliably predict binding modes and binding affinities of RNA ligands. We report for the first time the development of a knowledge-based scoring function to predict RNA-ligand interactions (DrugScoreRNA). Based on the formalism of the DrugScore approach, distance-dependent pair potentials are derived from 670 crystallographically determined nucleic acid-ligand and -protein complexes. These potentials display quantitative differences compared to those of DrugScore (derived from protein-ligand complexes) and DrugScoreCSD (derived from small-molecule crystal data). When used as an objective function for docking 31 RNA-ligand complexes, DrugScoreRNA generates "good" binding geometries (rmsd (root mean-square deviation) < 2 A) in 42% of all cases on the first scoring rank. This is an improvement of 44% to 120% when compared to DrugScore, DrugScoreCSD, and an RNA-adapted AutoDock scoring function. Encouragingly, good docking results are also obtained for a subset of 20 NMR structures not contained in the knowledge-base to derive the potentials. This clearly demonstrates the robustness of the potentials. Binding free energy landscapes generated by DrugScoreRNA show a pronounced funnel shape in almost 3/4 of all cases, indicating the reduced steepness of the knowledge-based potentials. Docking with DrugScoreRNA can thus be expected to converge fast to the global minimum. Finally, binding affinities were predicted for 15 RNA-ligand complexes with DrugScoreRNA. A fair correlation between experimental and computed values is found (RS = 0.61), which suffices to distinguish weak from strong binders, as is required in virtual screening applications. DrugScoreRNA again shows superior predictive power when compared to DrugScore, DrugScoreCSD, and an RNA-adapted AutoDock scoring function.
منابع مشابه
An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function
We have developed an iterative knowledge-based scoring function (ITScore) to describe protein-ligand interactions. Here, we assess ITScore through extensive tests on native structure identification, binding affinity prediction, and virtual database screening. Specifically, ITScore was first applied to a test set of 100 protein-ligand complexes constructed by Wang et al. (J Med Chem 2003, 46, 22...
متن کاملAn Improved PMF Scoring Function for Universally Predicting the Interactions of a Ligand with Protein, DNA, and RNA
An improved potential mean force (PMF) scoring function, named KScore, has been developed by using 23 redefined ligand atom types and 17 protein atom types, as well as 28 newly introduced atom types for nucleic acids (DNA and RNA). Metal ions and water molecules embedded in the binding sites of receptors are considered explicitly by two newly defined atom types. The individual potential terms w...
متن کاملProtein-Ligand Scoring with Convolutional Neural Networks
Computational approaches to drug discovery can reduce the time and cost associated with experimental assays and enable the screening of novel chemotypes. Structure-based drug design methods rely on scoring functions to rank and predict binding affinities and poses. The ever-expanding amount of protein-ligand binding and structural data enables the use of deep machine learning techniques for pro...
متن کاملOptimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity
Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental techniq...
متن کاملKnowledge-based scoring function to predict protein-ligand interactions.
The development and validation of a new knowledge-based scoring function (DrugScore) to describe the binding geometry of ligands in proteins is presented. It discriminates efficiently between well-docked ligand binding modes (root-mean-square deviation <2.0 A with respect to a crystallographically determined reference complex) and those largely deviating from the native structure, e.g. generate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and modeling
دوره 47 5 شماره
صفحات -
تاریخ انتشار 2007